【案例】自适应性学习产品:牛顿平台

《基于大数据的牛顿平台自适应学习机制分析》论文下载地址     

 Knewton是一家自适应学习基础服务提供商,公司所研发的牛顿平台是当前国际上一款优秀的适应性学习产品。牛顿平台可以帮助学校、出版商和技术开发者为学习者提供个性化的教育内容。接下来,将从自适应原理、核心技术、自适应服务三个方面对牛顿平台进行剖析,以期能够为教育大数据分析研究人员和自适应学习平台设计者提供理论参考和技术借鉴(万海鹏和汪丹,2016)。

(一) 牛顿平台的自适应原理

       自适应学习强调学习环境的适应性,要求创设的个性化学习环境能够最大限度地适应学习者的不同特征,并以此来开展个别化学习和针对不同能力的学习者进行“因材施教”。通过牛顿平台,自适应学习系统应保持适应的持续性,可以对学生的学习表现和活动完成质量给予及时反馈,在正确的时间基于正确的内容提供合适的学习指导,来最大化学生获得学习内容的可能性;同时基于给定活动的完成情况,自适应学习系统应能持续性地逐步引导学生进入下一个活动。

       为了保持持续自适应,即在任何时刻都能为学生做出个性化的学习进度安排,牛顿平台进行了概念层面的专业化数据(Proficiency Data,如知识概念掌握程度、学习投入程度、学习效率、优势劣势、活跃时间、预测分数等)采集处理,并建立了专业化数据与学习过程数据之间的关联映射。专业化的数据模型不仅能评估学生做了什么,还能在概念层面分析学生掌握了什么及学生的学习就绪状态、认知投入、学习偏好、学习风格、学习策略等,并向学生呈现为下一步学习或评估所应该做的准备及能力随时间变化的可视化图示。具体来说,牛顿平台的这种持续自适应主要体现在空间强化(Spaced Reinforcement)、记忆力和学习曲线(Retention and Learning Curves)、学生学习档案(Student Learning Profile)等方面。基于教育路径规划技术和学生能力模型,牛顿平台构建了自适应学习的基础框架,以最大程度地实现个性化。

1. 基础结构

       牛顿平台构建了一个基于规则、算法廉价的大规模规范化内容的基础设施(Heavy Duty Infrastructure),包括数据基础设施(Data Infrastructure)、推理基础设施(Inference Infrastructure)、个性化基础设施(Personalization Infrastructure)三部分。

       数据基础设施部分主要负责收集、处理海量的专业化数据,涉及用于规划和管理各个概念之间关系的自适应本体(Adaptive Ontology),及用于实时流和并行分布式流数据预处理的模型计算引擎(Model Computation Engine)。自适应本体是一组具有直观和可拓展性的概念对象及其关系的集合,这些概念和关系容易习得,且能很方便地用于表达学习内容之间的关系,为数据分析和自适应辅导提供基础支撑。模型计算引擎采用分布式的方式进行工作,能够将任务分解为细小的计算单元,以通过多台电脑实现高效的并行计算。而当某台电脑出现异常时,另外的电脑也能够及时取代并在任何状态下进行恢复。

       推理基础设施部分的目标在于扩大数据集和从收集的数据中形成视图,包括心理测验引擎(Psychometrics Engine)、学习策略引擎(Learning Strategy Engine)和反馈引擎(Feedback Engine)。其中,心理测验引擎负责评估学生的概念掌握程度、内容参数、学习效率等,并通过推理的方式来扩充学生的数据集(包括挖掘学习偏好、认知风格、知识结构、能力水平、学习进度等),最终形成能综合表征学习者全学习状态的信息档案面板;学习策略引擎主要用于评估学生对教学、评估、进度安排等方面变化的敏感程度,识别学生在学习过程中对学习资源、学习环境等改变做出的反应,并据此为学生选择合适的学习策略,如提供符合学习者认知风格的学习资源和导航、提供符合学习者学习水平的测评方案等;反馈引擎负责对数据和反馈结果进行归一化处理,并将它们返回到自适应本体库中,以丰富自适应本体的元数据信息,使知识概念与学生的学习过程信息之间建立更符合实际且可用的关联,进而提高推理和分析的精准性。

       个性化基础设施部分主要利用所有合并数据所构成的整体网络为学生寻找最优的学习策略,包括推荐引擎(Recommendations Engine)、预测分析引擎(Predictive Analytics Engine)和归一化学习轨迹(Unified Learning History)。其中,推荐引擎负责从目标均衡性、学生的优劣势、投入程度三个方面,为学生提供下一步操作的排序建议;预测分析引擎负责对学生的考量作预测,如达到教学目标的速率及完成程度、考试分数、概念的熟悉程度等;归一化学习轨迹的目的在于统一学生的个人账户,建立学生在不同学习应用、学科领域和学习时段与先前学习经验之间的关联,避免个性化推荐应用中常遇到的“冷启动”问题。

2. 数据模型

       数据模型(Data Model)是对现实数据特征的抽象,用于描述一组数据的概念和定义。对牛顿平台而言,数据模型是数据在系统中的存储方式,包括四部分内容:

(1)知识图谱(Knowledge Graph)

       知识图谱表示概念与概念之间关系的集合,是牛顿平台用于精准定位学生学习状态的重要方式,其结构如图3‑8所示。其中,圆圈代表概念;连线代表各概念之间的关系;箭头指向表示前一个概念是后一个概念的先修概念,二者之间是先修关系(Prerequisite Relationships)。牛顿平台的知识图谱是通过自适应本体来建立的,具有可扩展、可伸缩、可测量的特性。自适应本体由模块(内容片段)、概念、内容与概念之间的关系三种元素构成,其关系类型主要有:包含(Containment),表示该内容或概念从属于更大的群组;评估(Assessment),表示该内容提供了学生掌握状态的信息;教学(Instruction),表示该内容在教授某个具体的概念;先修(Prerequisiteness),表示学习该概念之前需要先掌握另外一个层级更低的概念。基于自适应本体,研究者和教师就能对典型的课本内容进行概念映射和标注。利用这种标注好的课本内容数据,结合学习交互数据、心理测验数据,牛顿平台就能自动为学生生成个性化的知识图谱。

【案例】自适应性学习产品:牛顿平台

图3‑8知识图谱(源于《牛顿平台技术白皮书》)

【案例】自适应性学习产品:牛顿平台

图3‑9学生响应事件数据结构示意

资料来源:万海鹏,汪丹.2016.基于大数据的牛顿平台自适应学习机制分析——“教育大数据研究与实践专栏”之关键技术篇.现代教育技术,26(5):5-11.

(2)学生事件(Student Events)

       学生事件是学生与学习内容交互时产生的系列数据流,主要用于对学生的能力进行实时推断。牛顿平台收集来自不同合作伙伴产品中所生成的交互数据流信息,用于为学生的个性化分析与推荐作支撑。学生响应事件数据的存储与交换格式,包括试题编号、作答持续时间、试题所属模块、交互结束时间、得分、正误状态及完成状态,其数据结构示意图如图3‑9所示。

(3)目标管理(Goal Management)

       目标管理是对学生学习结果数据的分析和处理。牛顿平台能够为学生提供可持续更新的学习目标档案,档案内容包括学生未学习的内容、已学习的内容、知识概念掌握的状态水平、成绩排名及如何学得更好的推荐信息。随着学生使用平台的时间变长,档案将会变得越来越智能。目标档案数据的存储与交换格式,包括知识概念名称、所属模块、目标分数、开始时间、目标时间、推荐模块候选集、模块推荐数量等。

(4)推荐与分析(Recommendations and Analytics,API)

       推荐与分析API作为学习者个性内容推荐与分析服务的接口,能为学习者持续提供内容推荐,并在学习进度、概念熟练程度、学习投入等方面进行精准推断。个性推荐与分析诊断数据的存储与交互格式,包括推荐模块、学习案例、目标模块、预期分数、置信区间、评估时间等。

(二) 牛顿平台的核心技术

1. 项目反应理论(Item Response Theory,IRT)

       项目反应理论将学习者对测试项目的反应(应答)通过表示测试项目特性的参数和被测试学习者能力的能力参数及其组合的统计概率模型来表示,其中表示项目特性的参数主要有难度系数和区分度。传统的项目反应理论一般针对问题、项目来设计相关参数,且运用过程中通常存在两大误区:一是认为学生的能力是个常量,二是倾向于用一个参数来表示学生的能力。

       考虑到能力的发展变化及多种能力之间的相互连接,牛顿平台对传统的项目反应理论进行了扩展,并从问题层级的表现来对学生的能力建模——认为学生的能力参数会随时间而变化;同时,对学生能力的表征不再局限于某个唯一的参数,而是通过利用聚焦于概念层面的知识图谱来对学生能力进行评估和表征。

2. Knewton API

       Knewton API是连接应用场景与合作平台的桥梁,以云服务的方式被第三方企业调用(图3‑10)。

【案例】自适应性学习产品:牛顿平台

图3‑10牛顿平台与第三方应用集成框架

资料来源:万海鹏,汪丹.2016.基于大数据的牛顿平台自适应学习机制分析——“教育大数据研究与实践专栏”之关键技术篇.现代教育技术,26(5):5-11.

       其中,核心服务层负责与牛顿平台的数据库打交道,并以表单的方式向应用服务层提供预处理后的数据信息,其中典型的服务就是知识的图谱化工作。基于本体库,图服务能时时进行图式化内容的信息更新,并结合实际需求对图谱进行基于历史版本的改造。应用服务层负责与推理引擎(包括心理测验引擎、推荐引擎等)进行对接,而这些引擎的正常工作都有赖于核心服务层所提供的可直接利用的数据。API调用与嵌入层则负责收集来自合作企业平台中产生的系列信息,并根据需要以消息的方式通知系统中的其它服务层。例如,当有内容需要加入到知识图谱或学生注册了一门课程,API调用与嵌入层接收这些信息后,便立即通知相应的核心服务层进行响应,并在数据存储层进行存储。具体说来,Knewton API能为合作企业提供下述三个层面的服务:

(1)学习历史记录层面

       Knewton API采集了学习者学习过程中所表现出的一系列学习偏好和差距,可帮助学生保持在新课程中的积极性。学习历史记录档案包括学生所知道的内容、掌握的水平、学得最好的课程、如何学得最好的推荐信息,并能持续性地进行更新。

(2)学习交互数据分析层面

       Knewton API能将海量数据转变为认知交互模型、估计向量、数据框架和可人为操控的视图,并向教师、家长、管理者和学生提供深层次的教学和内容分析报告——教学分析指标包括熟练程度、就绪状态预测、分数预测、活跃时间,基于该指标,教师可以在更加准确知晓学生缺点的前提下指导学生,年复一年地比较课程数据,按学期、按年度进行课程的改进和完善;内容分析可以帮助教师、出版者和管理者确定教学材料中最丰富和最薄弱的部分、需精细讲授和评估的部分,保证内容的持续更新,确保学生不会使用过时的教材。

(3)个性化推荐层面

       Knewton API通过综合考虑内容要素、学习者要素和目标要素来决定对下一步所应学习内容的推荐。其中,内容要素包括模块关系、教育意义、评估价值、问题难度、持续时间和学习投入程度,学习者要素包括概念熟悉程度、评估需求、复习需求、学习步调和材料重复接受度,目标要素则包括目标模块、目标分数、达标日期、可推荐模块。

(三) 牛顿平台的自适应服务

1. 差异化引导的自适应学习过程

       牛顿平台提供差异化的学习辅导服务,即利用项目反应理论对学生的学习状态进行测试评估,基于学生问题层面的表现而不是整体测试成绩来对学生的能力进行建模。对于理解不同问题所带来的贡献,项目反应理论并没有同等看待,而是针对每一个问题提供了包含问题信息和答题者个人能力信息的贡献计算解释。下文将以一个差异化引导任务为例,来阐述牛顿平台的实时自适应学习过程。

       如图3‑11所示,Amy、Bill和Chad三位学生有同样的学习目标——理解乘法公式、一位数乘法、两位数乘法、解决乘法应用题;这四个概念的先修知识分别是乘法符号、理解乘法、100以内的整数乘法、用乘法解决问题,比如,要理解“两位数乘法”必须先理解“一位数乘法”;下方排列的小图形代表每位同学答的题目及正误信息,每道题对应的图形与它们所属的知识点框中的图形类型一致,图形的填充与否代表正误信息,实心表示正确,空心表示错误。

【案例】自适应性学习产品:牛顿平台

图3‑11同一目标不同学生的自适应学习过程

资料来源:万海鹏,汪丹.2016.基于大数据的牛顿平台自适应学习机制分析——“教育大数据研究与实践专栏”之关键技术篇.现代教育技术,26(5):5-11.

       从上图可以看出,这三位学生所答的前三道题目是一样的,由于第三道题Bill答错了,与其他两位同学出现了不同的学习状态,故三位同学开始呈现出不同的学习路径——Bill在理解“乘以两位数”时遇到了困难,故继续回答与这个主题相关的题目,而Amy和Chad进入到下一个主题;从第四题的回答结果来看,Amy回答正确继续完成接下来的题目,而Chad回答错误继续回答与“理解乘法公式”这个主题相关的题目。图3‑11展现了三位同学为达到同样的学习目标而进行的自适应学习过程,从中可以看出牛顿平台的差异化指导有助于学生更多地关注自己的薄弱环节,而不至于在已经掌握的环节上做无用功——平台引导那些学习困难的学生(如Bill和Chad)继续回答与问题主题相关的题目,直到他们理解、答对题目进而掌握概念;对于那些掌握程度较好的学生(如Amy),牛顿平台则向其提供按照自己步调学习的机会。

2. 创建自适应课程

       牛顿平台支持教师、家长及学生创建自适应课程,每门课都由创建者自由选择的若干个任务组件构成,每个任务组件内包含一定数量的题目,并以上述方式为学习者提供不同的学习路径。为自适应课程选择任务组件有两种方式:(1)接受推荐。牛顿平台基于知识图谱和用户教学行为数据分析,向用户推荐其可能感兴趣的任务组件,而用户可将推荐的任务组件加入到创建的个性化课程里。(2)根据目录树选择任务组件。牛顿平台已经内置大量的任务组件,以学科—年级—主题—子主题等任务多维关键词表征,用户可以通过多维搜索的方式来主动选择任务组件以创设个性化课程。比如,数学学科在六年级水平上有代数Ⅰ和代数Ⅱ、数据分析和概率统计、几何和三角函数、数和计算四大主题;在大主题下又有子主题,如数和计算这一主题包含数的概念、复数、比率等子主题;每个子主题又对应一个任务组件。

       课程创建完成后,用户可通过站内信和邮件的形式邀请学生加入、激活课程并参与学习。同时,用户还需要填写课程名称和课程详细描述、关联K-12课程大纲和任务完成时间,以方便其他用户查找和使用课程。牛顿平台将跟踪这门课程所有学习者的学习动态,向用户报告学生的基本信息和总体任务的完成情况,包括学习进度、学习困难、任务完成情况统计等信息,一方面方便教师和家长掌握学生动态,另一方面也利于用户进一步组建个性化的课程。

主题测试文章,只做测试使用。发布者:qinglinet,转转请注明出处:https://www.qlw.net/uncategorized/%e3%80%90%e6%a1%88%e4%be%8b%e3%80%91%e8%87%aa%e9%80%82%e5%ba%94%e6%80%a7%e5%ad%a6%e4%b9%a0%e4%ba%a7%e5%93%81%ef%bc%9a%e7%89%9b%e9%a1%bf%e5%b9%b3%e5%8f%b0.html

(0)
上一篇 2024年11月30日 下午4:47
下一篇 2024年11月30日 下午4:59

相关推荐

  • 【分享】从教学生应试到适应性学习平台,Knewton的转型之路

    【分享嘉宾介绍】 Ian Parker,教育制作人和多媒体专家,涉猎所有与视觉制作相关的领域。第一份工作是数学老师,之后加入了一个视频制作的公司,在2008年加入knewton,主要负责制作教学视频,是最初的创始团队之一,在knewton工作四年半,2012离开knewton之后开始为各个公司制作视频。 Anne Thomas,2012年加入Knewton,…

    未分类 2024年11月30日
    2230
  • 【研究】作为自适应学习平台Knewton的系统是怎么运作的

    Knewton所做的是基于规则的自适应学习 自适应在很多学习环境中都已经用到,最早的几十年前就已经说了自适应。到底自适应是什么意思,现在我们讲的是基于共识的自适应概念。 最简单的一种就是学生自己定步调,决定学习的节奏。但他们的学习材料和顺序还是一样的。现在市场上得MOOC就是这一类。好处就是如果学生学会了,可以很快的往前进。问题是很多时候学生已经知道了,但学…

    未分类 2024年11月30日
    1610
  • 【学术】自适应学习系统中关键技术

    自适应学习平台属于目前火热的智慧教育领域,国内外数以千计的公司正在进入这一领域,如Knewton、Kaplan、Declara、新东方、学而思、猿辅导、粉笔职教等。相对于传统的在线教育,它完全以学习者为中心,利用人工智能的成果,为平台上的每个学生制定个性化的学习任务,让学生获得最优教育资源。 自适应学习其实是我们传统因材施教的人工智能版本。传统教学中由于师生…

    未分类 2024年11月30日
    2090
  • 【分享】AI自适应教育火爆,美国领头羊Knewton如何布局?

    Knewton前首席产品官、现合作与发展高级副总裁Jason Jordan AI自适应教育持续火爆,将改变线上教育格局。3月15日,英途邀请美国领头羊先生,分享“北美高等教育市场自适应学习现状与未来”。 Jason Jordan在教育领域有着超过20年的丰富从业经历,自2016年起在Knewton担任高等教育市场的副总裁,2017年担任首席产品官。加入Kne…

    未分类 2024年11月30日
    2270

联系我们

400-800-8888

在线咨询: QQ交谈

邮件:admin@example.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信
青梨网,专注信息、通信行业类考试认证!